Optimization of stacking ensemble configurations through Artificial Bee Colony algorithm

نویسندگان

  • P. Shunmugapriya
  • S. Kanmani
چکیده

A Classifier Ensemble combines a finite number of classifiers of same kind or different, trained simultaneously for a common classification task. The Ensemble efficiently improves the generalization ability of the classifier compared to a single classifier. Stacking is one of the most influential ensemble techniques that applies a two level structure of classification namely the base classifiers level and the meta-classifier level. Finding suitable configuration of base level classifiers and the meta-level classifier is always a tedious task and it is domain specific. The Artificial Bee Colony (ABC) Algorithm is a relatively new and popular meta-heuristic search algorithm proved to be successful in solving optimization problems. In this work, we propose the construction of two types of stacking using ABC algorithm: ABCStacking1 and ABC-Stacking2. The proposed ABC based stacking is tested using 10 benchmark datasets. The results show that the ABC-Stacking yields promising results and is most useful in selecting the optimal base classifiers configuration and the meta-classifier. & 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures

In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete var...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

Vector Evaluated and Objective Switching Approaches of Artificial Bee Colony Algorithm (ABC) for Multi-Objective Design Optimization of Composite Plate Structures

In this paper, a generic methodology based on swarm algorithms using Artificial Bee Colony (ABC) algorithm is proposed for combined cost and weight optimization of laminated composite structures. Two approaches, namely Vector Evaluated Design Optimization (VEDO) and Objective Switching Design Optimization (OSDO), have been used for solving constrained multi-objective optimization problems. The ...

متن کامل

OPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE COLONY ALGORITHM

Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Swarm and Evolutionary Computation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013